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Many people working at many abstraction levels on the same
project at the same time.

Problem: How to keep track of each modification, in a way
readable by every one (Developer, Analyst, Manager)?

Goal: reduce cost, ease communication, trace software evolution.
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Current Solutions

m Versionning Control Repositories (CVS, SVN, DARCS, ...)
= textual documents, only for developer

m Model Driven/Reverse Engineering Architecture Tools
(OMONDO, Ptidej [Gué05], ...)
= no simultaneous modifications of code and model.

m post-mortem analysis (detection of refactorings, entity
matching [ACPTO1])
= no live feedback, no rollback capabilities.

5/24



Software Transformations: A formalism to trace program modifications
L

‘— Introduction

L Running Example

Development of a web server - Model

Listener Answerer
PUBIE Listener Giring F, it por); PUBITC Answerer{Dataou putstream socked;
public Answerer acceptConnection(String HTTP_Request, DaradutputStream socket);, | |public void generateq

First-draft, orignal specification

Page

AnswererFactory | «nterfaces
‘ IAnswerer

puBIic Fage(tring HTTF_Request, DataOutpuistrean socket, |
[ [public Answerer createAnswerertPage requesty, |

public String getRequestedURIQ;
public DaradUpuStream getsocket);
L]

voidl generated;

Listener
pUbIIC static Listener getlistener(string IF, int por), abstrac r——
protected Listener(String IF, int porty; Suati ynami
public Answerer acceptConnection(String HTTP_Request, DataOutputSiream socket); at
1
public void generate; public voied generate;

Actually created code modelization
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Development of a web server - Time line

time

A is Analyst, D is Developper, Each little number is a single modification.

Modification of Listener constructor (code modifications)
Creation of Item class (model modifications)
Modifications sent to D
Renaming of Item to Page and implementation of Page (code modifications)
Creation of |Answerer interface and its Factory (model modifications)
Modifications sent to D

Implementation of the |Answerer hierarchy (code modifications)

7/24



Software Transformations: A formalism to trace program modifications
LBa\ckground

Background

8/24



Software Transformations: A formalism to trace program modifications

L Background

Hoare Triples [Hoa69]

Representation of action having
m guards (pre-condition)

m effects (post-condition)

Notation:
“{pre-condition }action{post-condition}"
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Group and Homomorphism [DF04]

m Group:

Set of mathematical objects with an intern operation o.
Properties:

B © is associative,
m There is a unique neutral element for o,
m Each element has an unique inverse.

m Group Homomorphism:
Mathematical function from one group to another preserving
the group structure: F(rp o) = F(r)o F(r).
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Vocabulary: What is a transformation?

Transformation :
m Mathematical and reifiable object.
m Modification of a model (software representation).

m Defined under a meta-model (model specification [BP01]).

Notation Tpp: set of all transformations under the meta-model
MM.

Our goal: Transpose them between meta-models.

Example: Renaming a class could be a transformation.
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Transformations as Hoare Triple

Transformation = Modification:
m Is an action,
m Depends on a previous model state,

m Creates a new model state

Example:

{3Co A #C1}Rename Gy in CGi{#Co A 3Gy}
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Set of Transformations as Groups

o is sequencement (“followed by”, “then”).
m Internal Operation:
Va,bETMM,aObETMM
m Associativity:
Va,b,c € Tpym,(aob)oc=ao(boc) Y aoboc
m Unique Neutral Element (ldentity):
M e Typ st Vae Tyy,acl=1ca=a
m Unique Inverse:
VaeTpym, N ateTyystacal=aloa=1

m Inversion of sequence:
Va,be Tym,(aob)t=b"toa™l

Example: The reverse of Renaming a class FOO as BAR, is to
rename the class BAR as FOO.
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Transpositions as Group Homomorphism

Transformations are elements of Groups,
therefore
Transpositions are Group Homomorphisms.

F(aob) = F(a)o F(b)
F(Ipmi) = Tyumz
F(a')=F(a) !

Example: There would be a transposition between the code, the
developper work on, and the model, the analyst work on.
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Commutativity

commuting transformations = change modifications order.
Example: “Renaming FOO in BAR, then Adding a method baz in

BAR'’ becomes “Adding a method baz in FOO, then Renaming
FOO in BAR'.
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Implementation

m PADL [Gué03, AA03, GA0S]

m Meta-model used to represent specification of programs,
m High-level models.
m Developed to represent patterns and abstract designs,

m JCT

m Meta-model used to represent program code source,
m Low-level models (Bound Abstract Syntax Tree),
m Developped to represent Java Program, similarly to javac.
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Future Work

Implementation in progress:
m JCT implementation almost finalized,
m PADL and JCT transformations implementation in progress,

m Transposition between JCT and PADL to specify and
implement,

m PADL and JCT transformations commutativity
implementation in progress.
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Conclusion

Our approach provides:
m Mathematical theory, verifiable, formal.

m Live feedback and concurent modifications of the program, at
many levels of abstraction.

m Reversibility (Rollback facilities).

m Traceability of each transformations.

But is purely theoritical now. Implementation in progress.
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