
Software Transformations: A formalism to trace program modifications

Software Transformations:
A formalism to trace program modifications

Mathieu Lemoine
Université de Montréal, DIRO,

lemoinem@iro.umontreal.ca

Yann-Gaël Guéhéneuc
École Polytechnique de Montréal, Software Engineering,

yann-gael.gueheneuc@polymtl.ca

2009/01/16
(4th MoSART Meeting)

1/24



Software Transformations: A formalism to trace program modifications

1 Introduction
Context
Running Example

2 Background

3 Transformations: A Mathematical Formalism

4 Implementation

5 Future Work and Conclusion
Future Work
Conclusion

6 Bibliography

2/24



Software Transformations: A formalism to trace program modifications

Introduction

1 Introduction
Context
Running Example

2 Background

3 Transformations: A Mathematical Formalism

4 Implementation

5 Future Work and Conclusion
Future Work
Conclusion

6 Bibliography

3/24



Software Transformations: A formalism to trace program modifications

Introduction

Context

Typical Problem: Documenting Software Evolution

Many people working at many abstraction levels on the same
project at the same time.

Problem: How to keep track of each modification, in a way
readable by every one (Developer, Analyst, Manager)?

Goal: reduce cost, ease communication, trace software evolution.

4/24



Software Transformations: A formalism to trace program modifications

Introduction

Context

Current Solutions

Versionning Control Repositories (CVS, SVN, DARCS, ...)
ùñ textual documents, only for developer

Model Driven/Reverse Engineering Architecture Tools
(OMONDO, Ptidej [Gué05], ...)
ùñ no simultaneous modifications of code and model.

post-mortem analysis (detection of refactorings, entity
matching [ACPT01])
ùñ no live feedback, no rollback capabilities.

5/24



Software Transformations: A formalism to trace program modifications

Introduction

Running Example

Development of a web server - Model

First-draft, orignal specification

Actually created code modelization

6/24



Software Transformations: A formalism to trace program modifications

Introduction

Running Example

Development of a web server - Time line

A is Analyst, D is Developper, Each little number is a single modification.

1 Modification of Listener constructor (code modifications)

2 Creation of Item class (model modifications)

Modifications sent to D

3 Renaming of Item to Page and implementation of Page (code modifications)

4 Creation of IAnswerer interface and its Factory (model modifications)

Modifications sent to D

5 Implementation of the IAnswerer hierarchy (code modifications)

7/24



Software Transformations: A formalism to trace program modifications

Background

1 Introduction
Context
Running Example

2 Background

3 Transformations: A Mathematical Formalism

4 Implementation

5 Future Work and Conclusion
Future Work
Conclusion

6 Bibliography

8/24



Software Transformations: A formalism to trace program modifications

Background

Hoare Triples [Hoa69]

Representation of action having

guards (pre-condition)

effects (post-condition)

Notation:
“{pre-condition}action{post-condition}”

9/24



Software Transformations: A formalism to trace program modifications

Background

Group and Homomorphism [DF04]

Group:
Set of mathematical objects with an intern operation �.
Properties:

� is associative,
There is a unique neutral element for �,
Each element has an unique inverse.

Group Homomorphism:
Mathematical function from one group to another preserving
the group structure: F pr1 � r2q � F pr1q � F pr2q.

10/24



Software Transformations: A formalism to trace program modifications

Transformations: A Mathematical Formalism

1 Introduction
Context
Running Example

2 Background

3 Transformations: A Mathematical Formalism

4 Implementation

5 Future Work and Conclusion
Future Work
Conclusion

6 Bibliography

11/24



Software Transformations: A formalism to trace program modifications

Transformations: A Mathematical Formalism

Vocabulary: What is a transformation?

Transformation :

Mathematical and reifiable object.

Modification of a model (software representation).

Defined under a meta-model (model specification [BP01]).

Notation TMM : set of all transformations under the meta-model
MM.

Our goal: Transpose them between meta-models.

Example: Renaming a class could be a transformation.

12/24



Software Transformations: A formalism to trace program modifications

Transformations: A Mathematical Formalism

Transformations as Hoare Triple

Transformation = Modification:

Is an action,

Depends on a previous model state,

Creates a new model state

Example:

tDC0 ^ EC1uRename C0 in C1tEC0 ^ DC1u

13/24



Software Transformations: A formalism to trace program modifications

Transformations: A Mathematical Formalism

Set of Transformations as Groups

� is sequencement (“followed by”, “then”).

Internal Operation:
@a, b P TMM , a � b P TMM

Associativity:

@a, b, c P TMM , pa � bq � c � a � pb � cq
def
� a � b � c

Unique Neutral Element (Identity):
D!I P TMM st @a P TMM , a � I � I � a � a

Unique Inverse:
@a P TMM , D! a�1 P TMM st a � a�1 � a�1 � a � I
Inversion of sequence:
@a, b P TMM , pa � bq�1 � b�1 � a�1

Example: The reverse of Renaming a class FOO as BAR, is to
rename the class BAR as FOO.

14/24



Software Transformations: A formalism to trace program modifications

Transformations: A Mathematical Formalism

Transpositions as Group Homomorphism

Transformations are elements of Groups,
therefore
Transpositions are Group Homomorphisms.

F pa � bq � F paq � F pbq

F pIMM1q � IMM2

F pa�1q � F paq�1

Example: There would be a transposition between the code, the
developper work on, and the model, the analyst work on.

15/24



Software Transformations: A formalism to trace program modifications

Transformations: A Mathematical Formalism

Commutativity

commuting transformations = change modifications order.

Example: “Renaming FOO in BAR, then Adding a method baz in
BAR” becomes “Adding a method baz in FOO, then Renaming
FOO in BAR”.

16/24



Software Transformations: A formalism to trace program modifications

Implementation

1 Introduction
Context
Running Example

2 Background

3 Transformations: A Mathematical Formalism

4 Implementation

5 Future Work and Conclusion
Future Work
Conclusion

6 Bibliography

17/24



Software Transformations: A formalism to trace program modifications

Implementation

Implementation

PADL [Gué03, AA03, GA08]

Meta-model used to represent specification of programs,
High-level models.
Developed to represent patterns and abstract designs,

JCT

Meta-model used to represent program code source,
Low-level models (Bound Abstract Syntax Tree),
Developped to represent Java Program, similarly to javac.

18/24



Software Transformations: A formalism to trace program modifications

Future Work and Conclusion

1 Introduction
Context
Running Example

2 Background

3 Transformations: A Mathematical Formalism

4 Implementation

5 Future Work and Conclusion
Future Work
Conclusion

6 Bibliography

19/24



Software Transformations: A formalism to trace program modifications

Future Work and Conclusion

Future Work

Future Work

Implementation in progress:

JCT implementation almost finalized,

PADL and JCT transformations implementation in progress,

Transposition between JCT and PADL to specify and
implement,

PADL and JCT transformations commutativity
implementation in progress.

20/24



Software Transformations: A formalism to trace program modifications

Future Work and Conclusion

Conclusion

Conclusion

Our approach provides:

Mathematical theory, verifiable, formal.

Live feedback and concurent modifications of the program, at
many levels of abstraction.

Reversibility (Rollback facilities).

Traceability of each transformations.

But is purely theoritical now. Implementation in progress.

21/24



Software Transformations: A formalism to trace program modifications

Bibliography

Bibliography I

[AA03] Hervé Albin-Amiot, Idiomes et patterns java : Application à la
synthèse de code et à la détection, Ph.D. thesis, université de
Nantes, février 2003.

[ACPT01] G. Antoniol, B. Caprile, A. Potrich, and P. Tonella,
Design-code traceability recovery: selecting the basic linkage
properties, Sci. Comput. Program. 40 (2001), no. 2-3,
213–234.

[BP01] Jean Bézivin and Nicolas Ploquin, Tooling the MDA
framework: A new software maintenance and evolution
scheme proposal, Journal of Object-Oriented Programming
14 (2001), no. 12, .

[DF04] David S. Dummit and Richard M. Foote, Abstract algebra,
third ed., Wiley, 2004.

22/24



Software Transformations: A formalism to trace program modifications

Bibliography

Bibliography II

[GA08] Yann-Gaël Guéhéneuc and Giuliano Antoniol, Demima: A
multi-layered framework for design pattern identification,
Transactions on Software Engineering (2008), (english),
Accepted for publication.

[Gué03] Yann-Gaël Guéhéneuc, Un cadre pour la traçabilité des motifs
de conception, Ph.D. thesis, École des Mines de Nantes et
Université de Nantes, juin 2003.

[Gué05] Yann-Gaël Guéhéneuc, Ptidej: Promoting patterns with
patterns, Proceedings of the 1st ECOOP workshop on
Building a System using Patterns (Mohamed E. Fayad, ed.),
Springer-Verlag, July 2005 (english).

[Hoa69] C. A. R. Hoare, An axiomatic basis for computer
programming, Commun. ACM 12 (1969), no. 10, 576–580.

23/24



Software Transformations: A formalism to trace program modifications

The End!

Thank You!

Question?

24/24


	Introduction
	Context
	Running Example

	Background
	Transformations: A Mathematical Formalism
	Implementation
	Future Work and Conclusion
	Future Work
	Conclusion

	Bibliography
	

