Software Transformations: A formalism to trace program modifications

Software Transformations:

A formalism to trace program modifications

Mathieu Lemoine
Université de Montréal, DIRO,

lemoinem@iro.umontreal.ca

) Yann-Gaél Guéhéneuc
Ecole Polytechnique de Montréal, Software Engineering,
yann-gael.gueheneuc@polymtl.ca

2009/01/16
(4th MoSART Meeting)

1/24



Software Transformations: A formalism to trace program modifications

Introduction
m Context
m Running Example

Background
Transformations: A Mathematical Formalism
Implementation

Future Work and Conclusion
m Future Work
m Conclusion

@ Bibliography

2/24



Software Transformations: A formalism to trace program modifications

L Introduction

Introduction
m Context
m Running Example

3/24



Software Transformations: A formalism to trace program modifications

L Introduction
L Context

Typical Problem: Documenting Software Evolution

4/24

Many people working at many abstraction levels on the same
project at the same time.

Problem: How to keep track of each modification, in a way
readable by every one (Developer, Analyst, Manager)?

Goal: reduce cost, ease communication, trace software evolution.



Software Transformations: A formalism to trace program modifications
LIntroduction
L Context

Current Solutions

m Versionning Control Repositories (CVS, SVN, DARCS, ...)
= textual documents, only for developer

m Model Driven/Reverse Engineering Architecture Tools
(OMONDO, Ptidej [Gué05], ...)
= no simultaneous modifications of code and model.

m post-mortem analysis (detection of refactorings, entity
matching [ACPTO1])
= no live feedback, no rollback capabilities.

5/24



Software Transformations: A formalism to trace program modifications
L

‘— Introduction

L Running Example

Development of a web server - Model

Listener Answerer
PUBIE Listener Giring F, it por); PUBITC Answerer{Dataou putstream socked;
public Answerer acceptConnection(String HTTP_Request, DaradutputStream socket);, | |public void generateq

First-draft, orignal specification

Page

AnswererFactory | «nterfaces
‘ IAnswerer

puBIic Fage(tring HTTF_Request, DataOutpuistrean socket, |
[ [public Answerer createAnswerertPage requesty, |

public String getRequestedURIQ;
public DaradUpuStream getsocket);
L]

voidl generated;

Listener
pUbIIC static Listener getlistener(string IF, int por), abstrac r——
protected Listener(String IF, int porty; Suati ynami
public Answerer acceptConnection(String HTTP_Request, DataOutputSiream socket); at
1
public void generate; public voied generate;

Actually created code modelization

6/24



Software Transformations: A formalism to trace program modifications
L

‘— Introduction

L Running Example

Development of a web server - Time line

time

A is Analyst, D is Developper, Each little number is a single modification.

Modification of Listener constructor (code modifications)
Creation of Item class (model modifications)
Modifications sent to D
Renaming of Item to Page and implementation of Page (code modifications)
Creation of |Answerer interface and its Factory (model modifications)
Modifications sent to D

Implementation of the |Answerer hierarchy (code modifications)

7/24



Software Transformations: A formalism to trace program modifications
LBa\ckground

Background

8/24



Software Transformations: A formalism to trace program modifications

L Background

Hoare Triples [Hoa69]

Representation of action having
m guards (pre-condition)

m effects (post-condition)

Notation:
“{pre-condition }action{post-condition}"

9/24



Software Transformations: A formalism to trace program modifications

L Background

Group and Homomorphism [DF04]

m Group:

Set of mathematical objects with an intern operation o.
Properties:

B © is associative,
m There is a unique neutral element for o,
m Each element has an unique inverse.

m Group Homomorphism:
Mathematical function from one group to another preserving
the group structure: F(rp o) = F(r)o F(r).

10/24



Software Transformations: A formalism to trace program modifications

L Transformations: A Mathematical Formalism

Transformations: A Mathematical Formalism

11/24



Software Transformations: A formalism to trace program modifications

LTransformations: A Mathematical Formalism

Vocabulary: What is a transformation?

Transformation :
m Mathematical and reifiable object.
m Modification of a model (software representation).

m Defined under a meta-model (model specification [BP01]).

Notation Tpp: set of all transformations under the meta-model
MM.

Our goal: Transpose them between meta-models.

Example: Renaming a class could be a transformation.

12/24



Software Transformations: A formalism to trace program modifications

LTransformations: A Mathematical Formalism

Transformations as Hoare Triple

Transformation = Modification:
m Is an action,
m Depends on a previous model state,

m Creates a new model state

Example:

{3Co A #C1}Rename Gy in CGi{#Co A 3Gy}

13/24



Software Transformations: A formalism to trace program modifications

LTransformations: A Mathematical Formalism

Set of Transformations as Groups

o is sequencement (“followed by”, “then”).
m Internal Operation:
Va,bETMM,aObETMM
m Associativity:
Va,b,c € Tpym,(aob)oc=ao(boc) Y aoboc
m Unique Neutral Element (ldentity):
M e Typ st Vae Tyy,acl=1ca=a
m Unique Inverse:
VaeTpym, N ateTyystacal=aloa=1

m Inversion of sequence:
Va,be Tym,(aob)t=b"toa™l

Example: The reverse of Renaming a class FOO as BAR, is to
rename the class BAR as FOO.

14/24



Software Transformations: A formalism to trace program modifications

LTransformations: A Mathematical Formalism

Transpositions as Group Homomorphism

Transformations are elements of Groups,
therefore
Transpositions are Group Homomorphisms.

F(aob) = F(a)o F(b)
F(Ipmi) = Tyumz
F(a')=F(a) !

Example: There would be a transposition between the code, the
developper work on, and the model, the analyst work on.

15/24



Software Transformations: A formalism to trace program modifications
LTransformations: A Mathematical Formalism

Commutativity

commuting transformations = change modifications order.
Example: “Renaming FOO in BAR, then Adding a method baz in

BAR'’ becomes “Adding a method baz in FOO, then Renaming
FOO in BAR'.

16/24



Software Transformations: A formalism to trace program modifications

leplementation

Implementation

17/24



Software Transformations: A formalism to trace program modifications

L Implementation

Implementation

m PADL [Gué03, AA03, GA0S]

m Meta-model used to represent specification of programs,
m High-level models.
m Developed to represent patterns and abstract designs,

m JCT

m Meta-model used to represent program code source,
m Low-level models (Bound Abstract Syntax Tree),
m Developped to represent Java Program, similarly to javac.

18/24



Software Transformations: A formalism to trace program modifications

L Future Work and Conclusion

Future Work and Conclusion
m Future Work
m Conclusion

19/24



Software Transformations: A formalism to trace program modifications
LFuture Work and Conclusion
LFuture Work

Future Work

Implementation in progress:
m JCT implementation almost finalized,
m PADL and JCT transformations implementation in progress,

m Transposition between JCT and PADL to specify and
implement,

m PADL and JCT transformations commutativity
implementation in progress.

20/24



Software Transformations: A formalism to trace program modifications
LFuture Work and Conclusion

L Conclusion

Conclusion

Our approach provides:
m Mathematical theory, verifiable, formal.

m Live feedback and concurent modifications of the program, at
many levels of abstraction.

m Reversibility (Rollback facilities).

m Traceability of each transformations.

But is purely theoritical now. Implementation in progress.

21/24



Software Transformations: A formalism to trace program modifications

L Bibliography

Bibliography |

22/24

[AAD3]

[ACPTO1]

[BPO1]

[DF04]

Hervé Albin-Amiot, Idiomes et patterns java : Application a la
synthése de code et a la détection, Ph.D. thesis, université de
Nantes, février 2003.

G. Antoniol, B. Caprile, A. Potrich, and P. Tonella,
Design-code traceability recovery: selecting the basic linkage
properties, Sci. Comput. Program. 40 (2001), no. 2-3,
213-234.

Jean Bézivin and Nicolas Ploquin, Tooling the MDA
framework: A new software maintenance and evolution
scheme proposal, Journal of Object-Oriented Programming
14 (2001), no. 12,

David S. Dummit and Richard M. Foote, Abstract algebra,
third ed., Wiley, 2004.



Software Transformations: A formalism to trace program modifications

L Bibliography

Bibliography Il

23/24

[GAO8]

[Guén3]

[Gué0s]

[Hoa69]

Yann-Gaél Guéhéneuc and Giuliano Antoniol, Demima: A
multi-layered framework for design pattern identification,
Transactions on Software Engineering (2008), (english),
Accepted for publication.

Yann-Gaél Guéhéneuc, Un cadre pour la tracabilité des motifs
de conception, Ph.D. thesis, Ecole des Mines de Nantes et
Université de Nantes, juin 2003.

Yann-Gaél Guéhéneuc, Ptidej: Promoting patterns with
patterns, Proceedings of the 1* ECOOP workshop on
Building a System using Patterns (Mohamed E. Fayad, ed.),
Springer-Verlag, July 2005 (english).

C. A. R. Hoare, An axiomatic basis for computer
programming, Commun. ACM 12 (1969), no. 10, 576-580.



Software Transformations: A formalism to trace program modifications

The End!

Thank You!

Question?

24/24



	Introduction
	Context
	Running Example

	Background
	Transformations: A Mathematical Formalism
	Implementation
	Future Work and Conclusion
	Future Work
	Conclusion

	Bibliography
	

